THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics

MATH3280 Introductory Probability 2023-2024 Term 1
Suggested Solutions of Homework Assignment 6

Q1

(a)

$$
E(X Y)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y f(x, y) d x d y=\int_{0}^{1} \int_{0}^{y} x d x d y=\frac{1}{6}
$$

(b)

$$
E(X)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x f(x, y) d x d y=\int_{0}^{1} \int_{0}^{y} x \frac{1}{y} d x d y=\frac{1}{4} .
$$

(c)

$$
E(Y)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y f(x, y) d x d y=\int_{0}^{1} \int_{0}^{y} y \frac{1}{y} d x d y=\frac{1}{2}
$$

Q2

For $i=1,2, \ldots, 1000$, let X_{i} be the random variable such that $X_{i}=1$ if the i-th person gets a card which matches his age, and $X_{i}=0$ otherwise. Then $X=\sum_{i=1}^{1000} X_{i}$ is the number of matches. Since for each i, only one of the 1000 cards matches the age of the i-th person, we have

$$
E\left(X_{i}\right)=P\left(X_{i}=1\right)=1 / 1000
$$

and it follows that

$$
E(X)=\sum_{i=1}^{1000} E\left(X_{i}\right)=1
$$

Q3

Define $g(z)=z$ if $z>x$ and $g(z)=0$ for $z \leq x$. Then $X=g(Z)$ and proposition 2.1 on p. 191 , ch. 5 gives

$$
\begin{aligned}
E[X]=E[g(Z)] & =\int_{-\infty}^{\infty} g(z) \cdot f_{Z}(z) d z \\
& =\int_{-\infty}^{x} 0 \cdot f_{Z}(z) d z+\int_{x}^{\infty} z \cdot f_{Z}(z) d z \\
& =\frac{1}{\sqrt{2 \pi}} \int_{x}^{\infty} z \cdot e^{-\frac{z^{2}}{2}} d z \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{-\frac{x^{2}}{2}} e^{u} d u \\
& =\frac{1}{\sqrt{2 \pi}}\left[\left.e^{u}\right|_{-\infty} ^{-\frac{x^{2}}{2}}\right] \\
& =\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}
\end{aligned}
$$

Q4

(a) For $i=1,2, \ldots, 365$, let X_{i} be the random variable such that $X_{i}=1$ if the i-th day is a birthday of exactly three people, and $X_{i}=0$ otherwise. Then $X=\sum_{i=1}^{365} X_{i}$ is the number of days that are birthdays of exactly three people. Note that for each i,

$$
E\left(X_{i}\right)=P\left(X_{i}=1\right)=\binom{100}{3}\left(\frac{1}{365}\right)^{3}\left(\frac{364}{365}\right)^{97}
$$

Hence

$$
E(X)=\sum_{i=1}^{365} E\left(X_{i}\right)=365 \cdot\binom{100}{3}\left(\frac{1}{365}\right)^{3}\left(\frac{364}{365}\right)^{97} \approx 0.9301
$$

(b) For $i=1,2, \ldots, 365$, let Y_{i} be the random variable such that $Y_{i}=1$ if the i-th day is the birthday of at least one person, and $Y_{i}=0$ otherwise. Then $Y=\sum_{i=1}^{365} Y_{i}$ is the number of days that are birthdays of at least one person. Note that for each i,

$$
E\left(Y_{i}\right)=P\left(Y_{i}=1\right)=1-\left(\frac{364}{365}\right)^{100}
$$

Hence

$$
E(Y)=\sum_{i=1}^{365} E\left(Y_{i}\right)=365 \cdot\left(1-\left(\frac{364}{365}\right)^{100}\right) \approx 87.5755
$$

Q5

Note that since X and Y are independent, we have $E(X Y)=E(X) E(Y)$. Hence

$$
\begin{aligned}
E\left((X-Y)^{2}\right) & =E\left(X^{2}-2 X Y+Y^{2}\right) \\
& =E\left(X^{2}\right)-2 E(X Y)+E\left(Y^{2}\right) \\
& =\operatorname{Var}(X)+E(X)^{2}-2 E(X) E(Y)+\operatorname{Var}(Y)+E(Y)^{2} \\
& =\sigma^{2}+\mu^{2}-2 \mu^{2}+\sigma^{2}+\mu^{2} \\
& =2 \sigma^{2}
\end{aligned}
$$

Q6

Note that $\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)$

$$
\begin{aligned}
E(X Y) & =\int_{0}^{\infty} \int_{0}^{x} x y \cdot \frac{2 e^{-2 x}}{x} d y d x=\frac{1}{4} . \\
E(X) & =\int_{0}^{\infty} \int_{0}^{x} x \cdot \frac{2 e^{-2 x}}{x} d y d x=\frac{1}{2} . \\
E(Y) & =\int_{0}^{\infty} \int_{0}^{x} y \cdot \frac{2 e^{-2 x}}{x} d y d x=\frac{1}{4} .
\end{aligned}
$$

Hence $\operatorname{Cov}(X, Y)=1 / 8$.

Q7

(a) We have

$$
E(X)=\sum_{k=1}^{\infty} k P(X=k)=\sum_{k=1}^{\infty} k\left(\frac{5}{6}\right)^{k-1} \frac{1}{6}
$$

Using the fact that for $|x|<1$,

$$
\sum_{k=1}^{\infty} k x^{k-1}=\frac{1}{(1-x)^{2}}
$$

it follows that $E(X)=6$.
(b)

$$
\begin{aligned}
E(X \mid Y=1) & =\sum_{k=1}^{\infty} k \cdot P(X=k \mid Y=1) \\
& =\sum_{k=2}^{\infty} k\left(\frac{5}{6}\right)^{k-2} \frac{1}{6} \\
& =\sum_{k=1}^{\infty}(1+k)\left(\frac{5}{6}\right)^{k-1} \frac{1}{6} \\
& =1+E(X) \\
& =7
\end{aligned}
$$

(c)

$$
\begin{aligned}
E(X \mid Y=5) & =\sum_{k=1}^{\infty} k \cdot P(X=k \mid Y=5) \\
& =\sum_{k=1}^{4} k \cdot P(X=k \mid Y=5)+\sum_{k=6}^{\infty} k \cdot P(X=k \mid Y=5)
\end{aligned}
$$

$$
\sum_{k=1}^{4} k \cdot P(X=k \mid Y=5)=1(1 / 5)+2(4 / 5)(1 / 5)+3(4 / 5)^{2}(1 / 5)+4(4 / 5)^{3}(1 / 5)
$$

$$
=\frac{821}{625}
$$

$$
\sum_{k=6}^{\infty} k \cdot P(X=k \mid Y=5)=\sum_{k=6}^{\infty} k(4 / 5)^{4}(5 / 6)^{k-6}(1 / 6)
$$

$$
=(4 / 5)^{4} \sum_{k=1}^{\infty}(5+k)(5 / 6)^{k-1}(1 / 6)
$$

$$
=(4 / 5)^{4}(5+E(X))
$$

$$
=\frac{2816}{625}
$$

Hence

$$
E(X \mid Y=5)=\frac{3637}{625}
$$

Q8

The density of Y is

$$
f_{Y}(y)=\int_{0}^{\infty} \frac{e^{-x / y} e^{-y}}{y} d x=e^{-y}, \quad y>0
$$

and $f_{Y}(y)=0$ if $y \leq 0$. Hence for $y>0$,

$$
f_{X \mid Y}(x \mid y)=\frac{f(x, y)}{e^{-y}}
$$

and

$$
E\left(X^{2} \mid Y=y\right)=\int_{-\infty}^{\infty} x^{2} f_{X \mid Y}(x \mid y) d x=\int_{0}^{\infty} x^{2} \frac{e^{-x / y}}{y} d x=2 y^{2}
$$

Q9

X is a Poisson random variable with parameter $2, Y$ is a binomial random variable with parameter ($10,3 / 4$).
(a)

$$
\begin{aligned}
P(X+Y=2) & =P(X=0, Y=2)+P(X=1, Y=1)+P(X=2, Y=0) \\
& =P(X=0) P(Y=2)+P(X=1) P(Y=1)+P(X=2) P(Y=0) \\
& =e^{-2} 45\left(\frac{3}{4}\right)^{2}\left(\frac{1}{4}\right)^{8}+2 e^{-2} 10\left(\frac{3}{4}\right)^{1}\left(\frac{1}{4}\right)^{9}+2 e^{-2}\left(\frac{1}{4}\right)^{10} \\
& \approx 6.027 \times 10^{-5}
\end{aligned}
$$

(b)

$$
\begin{aligned}
P(X Y=0) & =P(X=0)+P(Y=0)-P(X=0, Y=0) \\
& =e^{-2}+\left(\frac{1}{4}\right)^{10}-e^{-2}\left(\frac{1}{4}\right)^{10} \\
& \approx 0.1353
\end{aligned}
$$

(c) $E[X Y]=E[X] \cdot E[Y]=2 \cdot \frac{30}{4}=15$.

Q10

(a) Note that $E\left(X_{n}\right)=1$ for each n. Since $\frac{X_{n}}{3^{n}} \geq 0$ for each n, by the monotone convergence theorem, we have

$$
E(X)=\sum_{n=1}^{\infty} E\left(\frac{X_{n}}{3^{n}}\right)=\sum_{n=1}^{\infty} \frac{E\left(X_{n}\right)}{3^{n}}=\sum_{n=1}^{\infty} \frac{1}{3^{n}}=\frac{1}{2}
$$

(b) Note that $\operatorname{Var}\left(X_{n}\right)=E\left(X_{n}^{2}\right)-E\left(X_{n}\right)^{2}=2-1^{2}=1$ for each n. Let N be a positive integer. Since $X_{1}, X_{2}, \ldots, X_{N}$ are independent, we have

$$
\operatorname{Var}\left(\sum_{n=1}^{N} \frac{X_{n}}{3^{n}}\right)=\sum_{n=1}^{N} \frac{\operatorname{Var}\left(X_{n}\right)}{3^{2 n}}=\sum_{n=1}^{N} \frac{1}{9^{n}}
$$

Note that

$$
\operatorname{Var}\left(\sum_{n=1}^{N} \frac{X_{n}}{3^{n}}\right)=E\left(\left(\sum_{n=1}^{N} \frac{X_{n}}{3^{n}}-\sum_{n=1}^{N} \frac{1}{3^{n}}\right)^{2}\right)
$$

converges to $E\left(\left(\sum_{n=1}^{\infty} \frac{X_{n}}{3^{n}}-\sum_{n=1}^{\infty} \frac{1}{3^{n}}\right)^{2}\right)=\operatorname{Var}\left(\sum_{n=1}^{\infty} \frac{X_{n}}{3^{n}}\right)$ as $N \rightarrow \infty$ by the dominated convergence theorem. Hence, taking limit $N \rightarrow \infty$ in (1), we have

$$
\operatorname{Var}\left(\sum_{n=1}^{\infty} \frac{X_{n}}{3^{n}}\right)=\sum_{n=1}^{\infty} \frac{1}{9^{n}}=\frac{1}{8}
$$

Q11

$$
\begin{aligned}
\operatorname{Cov}(X+Y, X-Y) & =E((X+Y)(X-Y))-E(X+Y) E(X-Y) \\
& =E\left(X^{2}-Y^{2}\right)-(E(X)+E(Y))(E(X)-E(Y)) \\
& =E\left(X^{2}\right)-E\left(Y^{2}\right)-\left(E(X)^{2}-E(Y)^{2}\right)
\end{aligned}
$$

Since X and Y are identically distributed, it follows that $E(X)=E(Y)$ and $E\left(X^{2}\right)=E\left(Y^{2}\right)$. Hence $\operatorname{Cov}(X+Y, X-Y)=0$.

